Papers
Topics
Authors
Recent
Search
2000 character limit reached

A short note on a short remark of Graham and Lovász

Published 19 Mar 2013 in math.CO | (1303.4517v2)

Abstract: Let D be the distance matrix of a connected graph G and let nn(G), np(G) be the number of strictly negative and positive eigenvalues of D respectively. It was remarked in [1] that it is not known whether there is a graph for which np(G) > nn (G). In this note we show that there exists an infinite number of graphs satisfying the stated inequality, namely the conference graphs of order> 9. A large representative of this class being the Paley graphs.The result is obtained by derving the eigenvalues of the distance matrix of a strongly-regular graph.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.