Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blowup of classical solutions for a class of 3-D quasilinear wave equations with small initial data (1303.4225v1)

Published 18 Mar 2013 in math.AP

Abstract: This paper is concerned with the small smooth data problem for the 3-D nonlinear wave equation $\partial_t2u-\left (1+u+\p_t u\right)\Delta u=0$. This equation is prototypical of the more general equation $\dsize\sum_{i,j=0}3g_{ij}(u, \nabla u)\partial_{ij}u=0$, where $x_0=t$ and $g_{ij}(u, \nabla u)=c_{ij}+d_{ij}u+\dsize\sum_{k=0}3e_{ij}k\partial_ku+O(|u|2+|\nabla u|2)$ are smooth functions of their arguments, with $c_{ij}, d_{ij}$ and $e_{ij}k$ being constants, and $d_{ij}\neq0$ for some $(i,j)$; moreover, $\dsize\sum_{i,j,k=0}3e_{ij}k(\partial_ku)\p_{ij} u$ does not fulfill the null condition. For the 3-D nonlinear wave equations $\partial_t2u-\left (1+u\right)\Delta u=0$ and $\partial_t2u-\left (1+\partial_t u\right)\Delta u=0$, H. Lindblad, S. Alinhac, and F. John proved and disproved, respectively, the global existence of small smooth data solutions. For radial initial data, we show that the small smooth data solution of $\partial_t2u-\left(1+u+\partial_t u\right)\Delta u=0$ blows up in finite time. The explicit expression of the asymptotic lifespan $T_{\varepsilon}$ as $\varepsilon\to0+$ is also given.

Citations (7)

Summary

We haven't generated a summary for this paper yet.