On the Landau-Lifshitz-Gilbert equation with magnetostriction (1303.4060v2)
Abstract: To describe and simulate dynamic micromagnetic phenomena, we consider a coupled system of the nonlinear Landau-Lifshitz-Gilbert equation and the conservation of momentum equation. This coupling allows to include magnetostrictive effects into the simulations. Existence of weak solutions has recently been shown in [Carbout et al. 2011]. In our contribution, we give an alternate proof which additionally provides an effective numerical integrator. The latter is based on lowest-order finite elements in space and a linear-implicit Euler time-stepping. Despite the nonlinearity, only two linear systems have to be solved per timestep, and the integrator fully decouples both equations. Finally, we prove unconditional convergence---at least of a subsequence---towards, and hence existence of, a weak solution of the coupled system, as timestep size and spatial mesh-size tend to zero. Numerical experiments conclude the work and shed new light on the existence of blow-up in micromagnetic simulations.