Papers
Topics
Authors
Recent
2000 character limit reached

Constructing symmetric topological phases of bosons in three dimensions via fermionic projective construction and dyon condensation

Published 14 Mar 2013 in cond-mat.str-el, hep-th, and quant-ph | (1303.3572v3)

Abstract: Recently, there is a considerable study on gapped symmetric phases of bosons that do not break any symmetry. Even without symmetry breaking, the bosons can still be in many exotic new states of matter, such as symmetry-protected trivial (SPT) phases which are short-range entangled and symmetry-enriched topological (SET) phases which are long-range entangled. It is well-known that non-interacting fermionic topological insulators are SPT states protected by time-reversal symmetry and U(1) fermion number conservation symmetry. In this paper, we construct three-dimensional exotic phases of bosons with time-reversal symmetry and boson number conservation U(1) symmetry by means of fermionic projective construction. We first construct an algebraic bosonic insulator which is a symmetric bosonic state with an emergent U(1) gapless gauge field. We then obtain many gapped bosonic states that do not break the time-reversal symmetry and boson number conservation via proper dyon condensations. We identify the constructed states by calculating the allowed electric and magnetic charges of their excitations, as well as the statistics and the symmetric transformation properties of those excitations. This allows us to show that our constructed states can be trivial SPT states (i.e. trivial Mott insulators of bosons with symmetry), non-trivial SPT states (i.e. bosonic topological insulators) and SET states (i.e. fractional bosonic topological insulators). In non-trivial SPT states, the elementary monopole (carrying zero electric charge but unit magnetic charge) and elementary dyon (carrying both unit electric charge and unit magnetic charge) are fermionic and bosonic, respectively. In SET states, intrinsic excitations may carry fractional charge.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.