Papers
Topics
Authors
Recent
2000 character limit reached

A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium

Published 14 Mar 2013 in math.AP and physics.flu-dyn | (1303.3496v1)

Abstract: We present modeling of an incompressible viscous flow through a fracture adjacent to a porous medium. We consider a fast stationary flow, predominantly tangential to the porous medium. Slow flow in such setting can be described by the Beavers-Joseph-Saffman slip. For fast flows, a nonlinear filtration law in the porous medium and a non- linear interface law are expected. In this paper we rigorously derive a quadratic effective slip interface law which holds for a range of Reynolds numbers and fracture widths. The porous medium flow is described by the Darcys law. The result shows that the interface slip law can be nonlinear, independently of the regime for the bulk flow. Since most of the interface and boundary slip laws are obtained via upscaling of complex systems, the result indicates that studying the inviscid limits for the Navier-Stokes equations with linear slip law at the boundary should be rethought.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.