Papers
Topics
Authors
Recent
2000 character limit reached

Detecting Majorana fermions in quasi-one-dimensional topological phases using nonlocal order parameters

Published 11 Mar 2013 in cond-mat.str-el | (1303.2600v2)

Abstract: Topological phases which host Majorana fermions can not be identified via local order parameters. We give simple nonlocal order parameters to distinguish quasi-one-dimensional (1D) topological superconductors of spinless fermions, for any interacting model in the absence of time reversal symmetry. These string or "brane" order parameters are natural for measurements in cold atom systems using quantum gas microscopy. We propose them as a way to identify symmetry-protected topological phases of Majorana fermions in cold atom experiments via bulk rather than edge degrees of freedom. Subsequently, we study two-dimensional (2D) topological superconductors via the quasi-1D limit of coupling $N$ identical chains on the cylinder. We classify the symmetric, interacting topological phases protected by the additional $\mathbb{Z}_N$ translation symmetry. The phases include quasi-1D analogs of (i) the $p+ip$ chiral topological superconductor, which can be distinguished up to the 2D Chern number mod 2, and (ii) the 2D weak topological superconductor. We devise general rules for constructing nonlocal order parameters which distinguish the phases. These rules encode the signature of the fermionic topological phase in the symmetry properties of the terminating operators of the nonlocal string or brane. The nonlocal order parameters for some of these phases simply involve a product of the string order parameters for the individual chains. Finally, we give a physical picture of one of the topological phases as a condensate of certain defects, which motivates the form of the nonlocal order parameter and is reminiscent of higher dimensional constructions of topological phases.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.