Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Inherent Randomness of Evolving Populations (1303.1890v3)

Published 8 Mar 2013 in math.DS, cs.IT, math.IT, and q-bio.PE

Abstract: The entropy rates of the Wright-Fisher process, the Moran process, and generalizations are computed and used to compare these processes and their dependence on standard evolutionary parameters. Entropy rates are measures of the variation dependent on both short-run and long-run behavior, and allow the relationships between mutation, selection, and population size to be examined. Bounds for the entropy rate are given for the Moran process (independent of population size) and for the Wright-Fisher process (bounded for fixed population size). A generational Moran process is also presented for comparison to the Wright-Fisher Process. Results include analytic results and computational extensions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.