Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Automatic Emotion Recognition from speech using Rhythm and Temporal feature (1303.1761v1)

Published 7 Mar 2013 in cs.CV

Abstract: This paper is devoted to improve automatic emotion recognition from speech by incorporating rhythm and temporal features. Research on automatic emotion recognition so far has mostly been based on applying features like MFCCs, pitch and energy or intensity. The idea focuses on borrowing rhythm features from linguistic and phonetic analysis and applying them to the speech signal on the basis of acoustic knowledge only. In addition to this we exploit a set of temporal and loudness features. A segmentation unit is employed in starting to separate the voiced/unvoiced and silence parts and features are explored on different segments. Thereafter different classifiers are used for classification. After selecting the top features using an IGR filter we are able to achieve a recognition rate of 80.60 % on the Berlin Emotion Database for the speaker dependent framework.

Citations (32)

Summary

We haven't generated a summary for this paper yet.