Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Family of Finite Geometry Low-Density Parity-Check Codes for Quantum Key Expansion (1303.1760v3)

Published 7 Mar 2013 in quant-ph, cs.IT, and math.IT

Abstract: We consider a quantum key expansion (QKE) protocol based on entanglement-assisted quantum error-correcting codes (EAQECCs). In these protocols, a seed of a previously shared secret key is used in the post-processing stage of a standard quantum key distribution protocol like the Bennett-Brassard 1984 protocol, in order to produce a larger secret key. This protocol was proposed by Luo and Devetak, but codes leading to good performance have not been investigated. We look into a family of EAQECCs generated by classical finite geometry (FG) low-density parity-check (LDPC) codes, for which very efficient iterative decoders exist. A critical observation is that almost all errors in the resulting secret key result from uncorrectable block errors that can be detected by an additional syndrome check and an additional sampling step. Bad blocks can then be discarded. We make some changes to the original protocol to avoid the consumption of the preshared key when the protocol fails. This allows us to greatly reduce the bit error rate of the key at the cost of a minor reduction in the key production rate, but without increasing the consumption rate of the preshared key. We present numerical simulations for the family of FG LDPC codes, and show that this improved QKE protocol has a good net key production rate even at relatively high error rates, for appropriate choices of these codes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.