Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing community detection using a network weighting strategy (1303.1741v1)

Published 7 Mar 2013 in cs.SI, cs.DS, and physics.soc-ph

Abstract: A community within a network is a group of vertices densely connected to each other but less connected to the vertices outside. The problem of detecting communities in large networks plays a key role in a wide range of research areas, e.g. Computer Science, Biology and Sociology. Most of the existing algorithms to find communities count on the topological features of the network and often do not scale well on large, real-life instances. In this article we propose a strategy to enhance existing community detection algorithms by adding a pre-processing step in which edges are weighted according to their centrality w.r.t. the network topology. In our approach, the centrality of an edge reflects its contribute to making arbitrary graph tranversals, i.e., spreading messages over the network, as short as possible. Our strategy is able to effectively complements information about network topology and it can be used as an additional tool to enhance community detection. The computation of edge centralities is carried out by performing multiple random walks of bounded length on the network. Our method makes the computation of edge centralities feasible also on large-scale networks. It has been tested in conjunction with three state-of-the-art community detection algorithms, namely the Louvain method, COPRA and OSLOM. Experimental results show that our method raises the accuracy of existing algorithms both on synthetic and real-life datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Pasquale De Meo (31 papers)
  2. Emilio Ferrara (197 papers)
  3. Giacomo Fiumara (30 papers)
  4. Alessandro Provetti (21 papers)
Citations (104)

Summary

We haven't generated a summary for this paper yet.