Using Tree-Decomposable Structures to Approximate Belief Networks (1303.1499v1)
Abstract: Tree structures have been shown to provide an efficient framework for propagating beliefs [Pearl,1986]. This paper studies the problem of finding an optimal approximating tree. The star decomposition scheme for sets of three binary variables [Lazarsfeld,1966; Pearl,1986] is shown to enhance the class of probability distributions that can support tree structures; such structures are called tree-decomposable structures. The logarithm scoring rule is found to be an appropriate optimality criterion to evaluate different tree-decomposable structures. Characteristics of such structures closest to the actual belief network are identified using the logarithm rule, and greedy and exact techniques are developed to find the optimal approximation.