Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-User Construction of Influence Diagrams for Bayesian Statistics (1303.1459v1)

Published 6 Mar 2013 in cs.AI

Abstract: Influence diagrams are ideal knowledge representations for Bayesian statistical models. However, these diagrams are difficult for end users to interpret and to manipulate. We present a user-based architecture that enables end users to create and to manipulate the knowledge representation. We use the problem of physicians' interpretation of two-arm parallel randomized clinical trials (TAPRCT) to illustrate the architecture and its use. There are three primary data structures. Elements of statistical models are encoded as subgraphs of a restricted class of influence diagram. The interpretations of those elements are mapped into users' language in a domain-specific, user-based semantic interface, called a patient-flow diagram, in the TAPRCT problem. Pennitted transformations of the statistical model that maintain the semantic relationships of the model are encoded in a metadata-state diagram, called the cohort-state diagram, in the TAPRCT problem. The algorithm that runs the system uses modular actions called construction steps. This framework has been implemented in a system called THOMAS, that allows physicians to interpret the data reported from a TAPRCT.

Citations (1)

Summary

We haven't generated a summary for this paper yet.