Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tradeoffs in Constructing and Evaluating Temporal Influence Diagrams (1303.1458v1)

Published 6 Mar 2013 in cs.AI

Abstract: This paper addresses the tradeoffs which need to be considered in reasoning using probabilistic network representations, such as Influence Diagrams (IDs). In particular, we examine the tradeoffs entailed in using Temporal Influence Diagrams (TIDs) which adequately capture the temporal evolution of a dynamic system without prohibitive data and computational requirements. Three approaches for TID construction which make different tradeoffs are examined: (1) tailoring the network at each time interval to the data available (rather then just copying the original Bayes Network for all time intervals); (2) modeling the evolution of a parsimonious subset of variables (rather than all variables); and (3) model selection approaches, which seek to minimize some measure of the predictive accuracy of the model without introducing too many parameters, which might cause "overfitting" of the model. Methods of evaluating the accuracy/efficiency of the tradeoffs are proposed.

Citations (43)

Summary

We haven't generated a summary for this paper yet.