Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear PDEs with modulated dispersion I: Nonlinear Schrödinger equations (1303.0822v3)

Published 4 Mar 2013 in math.AP and math.PR

Abstract: We start a study of various nonlinear PDEs under the effect of a modulation in time of the dispersive term. In particular in this paper we consider the modulated non-linear Schr\"odinger equation (NLS) in dimension 1 and 2 and the derivative NLS in dimension 1. We introduce a deterministic notion of "irregularity" for the modulation and obtain local and global results similar to those valid without modulation. In some situations, we show how the irregularity of the modulation improves the well--posedness theory of the equations. We develop two different approaches to the analysis of the effects of the modulation. A first approach is based on novel estimates for the regularising effect of the modulated dispersion on the non-linear term using the theory of controlled paths. A second approach is an extension of a Strichartz estimated first obtained by Debussche and Tsutsumi in the case of the Brownian modulation for the quintic NLS.

Summary

We haven't generated a summary for this paper yet.