Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient long division via Montgomery multiply (1303.0328v6)

Published 2 Mar 2013 in cs.DS

Abstract: We present a novel right-to-left long division algorithm based on the Montgomery modular multiply, consisting of separate highly efficient loops with simply carry structure for computing first the remainder (x mod q) and then the quotient floor(x/q). These loops are ideally suited for the case where x occupies many more machine words than the divide modulus q, and are strictly linear time in the "bitsize ratio" lg(x)/lg(q). For the paradigmatic performance test of multiword dividend and single 64-bit-word divisor, exploitation of the inherent data-parallelism of the algorithm effectively mitigates the long latency of hardware integer MUL operations, as a result of which we are able to achieve respective costs for remainder-only and full-DIV (remainder and quotient) of 6 and 12.5 cycles per dividend word on the Intel Core 2 implementation of the x86_64 architecture, in single-threaded execution mode. We further describe a simple "bit-doubling modular inversion" scheme, which allows the entire iterative computation of the mod-inverse required by the Montgomery multiply at arbitrarily large precision to be performed with cost less than that of a single Newtonian iteration performed at the full precision of the final result. We also show how the Montgomery-multiply-based powering can be efficiently used in Mersenne and Fermat-number trial factorization via direct computation of a modular inverse power of 2, without any need for explicit radix-mod scalings.

Citations (3)

Summary

We haven't generated a summary for this paper yet.