Papers
Topics
Authors
Recent
2000 character limit reached

Ensemble Sparse Models for Image Analysis

Published 27 Feb 2013 in cs.CV | (1302.6957v1)

Abstract: Sparse representations with learned dictionaries have been successful in several image analysis applications. In this paper, we propose and analyze the framework of ensemble sparse models, and demonstrate their utility in image restoration and unsupervised clustering. The proposed ensemble model approximates the data as a linear combination of approximations from multiple \textit{weak} sparse models. Theoretical analysis of the ensemble model reveals that even in the worst-case, the ensemble can perform better than any of its constituent individual models. The dictionaries corresponding to the individual sparse models are obtained using either random example selection or boosted approaches. Boosted approaches learn one dictionary per round such that the dictionary learned in a particular round is optimized for the training examples having high reconstruction error in the previous round. Results with compressed recovery show that the ensemble representations lead to a better performance compared to using a single dictionary obtained with the conventional alternating minimization approach. The proposed ensemble models are also used for single image superresolution, and we show that they perform comparably to the recent approaches. In unsupervised clustering, experiments show that the proposed model performs better than baseline approaches in several standard datasets.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.