Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Macroscopic equations governing noisy spiking neuronal populations (1302.6952v1)

Published 27 Feb 2013 in q-bio.NC

Abstract: At functional scales, cortical behavior results from the complex interplay of a large number of excitable cells operating in noisy environments. Such systems resist to mathematical analysis, and computational neurosciences have largely relied on heuristic partial (and partially justified) macroscopic models, which successfully reproduced a number of relevant phenomena. The relationship between these macroscopic models and the spiking noisy dynamics of the underlying cells has since then been a great endeavor. Based on recent mean-field reductions for such spiking neurons, we present here {a principled reduction of large biologically plausible neuronal networks to firing-rate models, providing a rigorous} relationship between the macroscopic activity of populations of spiking neurons and popular macroscopic models, under a few assumptions (mainly linearity of the synapses). {The reduced model we derive consists of simple, low-dimensional ordinary differential equations with} parameters and {nonlinearities derived from} the underlying properties of the cells, and in particular the noise level. {These simple reduced models are shown to reproduce accurately the dynamics of large networks in numerical simulations}. Appropriate parameters and functions are made available {online} for different models of neurons: McKean, Fitzhugh-Nagumo and Hodgkin-Huxley models.

Summary

We haven't generated a summary for this paper yet.