Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Taming the Curse of Dimensionality: Discrete Integration by Hashing and Optimization (1302.6677v1)

Published 27 Feb 2013 in cs.LG, cs.AI, and stat.ML

Abstract: Integration is affected by the curse of dimensionality and quickly becomes intractable as the dimensionality of the problem grows. We propose a randomized algorithm that, with high probability, gives a constant-factor approximation of a general discrete integral defined over an exponentially large set. This algorithm relies on solving only a small number of instances of a discrete combinatorial optimization problem subject to randomly generated parity constraints used as a hash function. As an application, we demonstrate that with a small number of MAP queries we can efficiently approximate the partition function of discrete graphical models, which can in turn be used, for instance, for marginal computation or model selection.

Citations (129)

Summary

We haven't generated a summary for this paper yet.