Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improvement to Levenshtein's Upper Bound on the Cardinality of Deletion Correcting Codes (1302.6562v2)

Published 26 Feb 2013 in cs.IT, cs.DM, and math.IT

Abstract: We consider deletion correcting codes over a q-ary alphabet. It is well known that any code capable of correcting s deletions can also correct any combination of s total insertions and deletions. To obtain asymptotic upper bounds on code size, we apply a packing argument to channels that perform different mixtures of insertions and deletions. Even though the set of codes is identical for all of these channels, the bounds that we obtain vary. Prior to this work, only the bounds corresponding to the all insertion case and the all deletion case were known. We recover these as special cases. The bound from the all deletion case, due to Levenshtein, has been the best known for more than forty five years. Our generalized bound is better than Levenshtein's bound whenever the number of deletions to be corrected is larger than the alphabet size.

Citations (42)

Summary

We haven't generated a summary for this paper yet.