Papers
Topics
Authors
Recent
2000 character limit reached

Heat kernel estimates for pseudodifferential operators, fractional Laplacians and Dirichlet-to-Neumann operators

Published 26 Feb 2013 in math.AP and math.FA | (1302.6529v4)

Abstract: The purpose of this article is to establish upper and lower estimates for the integral kernel of the semigroup exp(-tP) associated to a classical, strongly elliptic pseudodifferential operator P of positive order on a closed manifold. The Poissonian bounds generalize those obtained for perturbations of fractional powers of the Laplacian. In the selfadjoint case, extensions to t in C_+ are studied. In particular, our results apply to the Dirichlet-to-Neumann semigroup.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.