Papers
Topics
Authors
Recent
2000 character limit reached

An Unexpected Congruence Modulo 5 for 4--Colored Generalized Frobenius Partitions

Published 22 Feb 2013 in math.NT | (1302.5708v1)

Abstract: In his 1984 AMS Memoir, George Andrews defined the family of $k$--colored generalized Frobenius partition functions. These are denoted by $c\phi_k(n)$ where $k\geq 1$ is the number of colors in question. In that Memoir, Andrews proved (among many other things) that, for all $n\geq 0,$ $c\phi_2(5n+3) \equiv 0\pmod{5}.$ Soon after, many authors proved congruence properties for various $k$--colored generalized Frobenius partition functions, typically with a small number of colors. In 2011, Baruah and Sarmah proved a number of congruence properties for $c\phi_4$, all with moduli which are powers of 4. In this brief note, we add to the collection of congruences for $c\phi_4$ by proving this function satisfies an unexpected result modulo 5. The proof is elementary, relying on Baruah and Sarmah's results as well as work of Srinivasa Ramanujan.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.