Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bond percolation on a non-p.c.f. Sierpiński Gasket, iterated barycentric subdivision of a triangle, and Hexacarpet

Published 21 Feb 2013 in math.PR | (1302.5436v3)

Abstract: We investigate bond percolation on the iterated barycentric subdivision of a triangle, the hexacarpet, and the non-p.c.f. Sierpinski gasket. With the use of the diamond fractal, we are able to bound the critical probability of percolation on the non-p.c.f. gasket and the iterated barycentric subdivision of a triangle from above by 0.282. We then show how both the gasket and hexacarpet fractals are related via the iterated barycentric subdivisions of a triangle: the two spaces exhibit duality properties although they are not themselves dual graphs. Finally we show the existence of a non-trivial phase transition on all three graphs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.