Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Coding Schemes for the Distributed Computation of Subspaces (1302.5021v1)

Published 20 Feb 2013 in cs.IT and math.IT

Abstract: Let $X_1, ..., X_m$ be a set of $m$ statistically dependent sources over the common alphabet $\mathbb{F}_q$, that are linearly independent when considered as functions over the sample space. We consider a distributed function computation setting in which the receiver is interested in the lossless computation of the elements of an $s$-dimensional subspace $W$ spanned by the elements of the row vector $[X_1, \ldots, X_m]\Gamma$ in which the $(m \times s)$ matrix $\Gamma$ has rank $s$. A sequence of three increasingly refined approaches is presented, all based on linear encoders. The first approach uses a common matrix to encode all the sources and a Korner-Marton like receiver to directly compute $W$. The second improves upon the first by showing that it is often more efficient to compute a carefully chosen superspace $U$ of $W$. The superspace is identified by showing that the joint distribution of the ${X_i}$ induces a unique decomposition of the set of all linear combinations of the ${X_i}$, into a chain of subspaces identified by a normalized measure of entropy. This subspace chain also suggests a third approach, one that employs nested codes. For any joint distribution of the ${X_i}$ and any $W$, the sum-rate of the nested code approach is no larger than that under the Slepian-Wolf (SW) approach. Under the SW approach, $W$ is computed by first recovering each of the ${X_i}$. For a large class of joint distributions and subspaces $W$, the nested code approach is shown to improve upon SW. Additionally, a class of source distributions and subspaces are identified, for which the nested-code approach is sum-rate optimal.

Citations (9)

Summary

We haven't generated a summary for this paper yet.