Papers
Topics
Authors
Recent
Search
2000 character limit reached

Information/Relevance Influence Diagrams

Published 20 Feb 2013 in cs.AI | (1302.4963v1)

Abstract: In this paper we extend the influence diagram (ID) representation for decisions under uncertainty. In the standard ID, arrows into a decision node are only informational; they do not represent constraints on what the decision maker can do. We can represent such constraints only indirectly, using arrows to the children of the decision and sometimes adding more variables to the influence diagram, thus making the ID more complicated. Users of influence diagrams often want to represent constraints by arrows into decision nodes. We represent constraints on decisions by allowing relevance arrows into decision nodes. We call the resulting representation information/relevance influence diagrams (IRIDs). Information/relevance influence diagrams allow for direct representation and specification of constrained decisions. We use a combination of stochastic dynamic programming and Gibbs sampling to solve IRIDs. This method is especially useful when exact methods for solving IDs fail.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.