Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Canonical dual solutions to nonconvex radial basis neural network optimization problem (1302.4141v1)

Published 18 Feb 2013 in cs.NE, cs.LG, and stat.ML

Abstract: Radial Basis Functions Neural Networks (RBFNNs) are tools widely used in regression problems. One of their principal drawbacks is that the formulation corresponding to the training with the supervision of both the centers and the weights is a highly non-convex optimization problem, which leads to some fundamentally difficulties for traditional optimization theory and methods. This paper presents a generalized canonical duality theory for solving this challenging problem. We demonstrate that by sequential canonical dual transformations, the nonconvex optimization problem of the RBFNN can be reformulated as a canonical dual problem (without duality gap). Both global optimal solution and local extrema can be classified. Several applications to one of the most used Radial Basis Functions, the Gaussian function, are illustrated. Our results show that even for one-dimensional case, the global minimizer of the nonconvex problem may not be the best solution to the RBFNNs, and the canonical dual theory is a promising tool for solving general neural networks training problems.

Citations (16)

Summary

We haven't generated a summary for this paper yet.