Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering validity based on the most similarity (1302.3956v1)

Published 16 Feb 2013 in cs.LG and stat.ML

Abstract: One basic requirement of many studies is the necessity of classifying data. Clustering is a proposed method for summarizing networks. Clustering methods can be divided into two categories named model-based approaches and algorithmic approaches. Since the most of clustering methods depend on their input parameters, it is important to evaluate the result of a clustering algorithm with its different input parameters, to choose the most appropriate one. There are several clustering validity techniques based on inner density and outer density of clusters that represent different metrics to choose the most appropriate clustering independent of the input parameters. According to dependency of previous methods on the input parameters, one challenge in facing with large systems, is to complete data incrementally that effects on the final choice of the most appropriate clustering. Those methods define the existence of high intensity in a cluster, and low intensity among different clusters as the measure of choosing the optimal clustering. This measure has a tremendous problem, not availing all data at the first stage. In this paper, we introduce an efficient measure in which maximum number of repetitions for various initial values occurs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.