Papers
Topics
Authors
Recent
Search
2000 character limit reached

Geometric Implications of the Naive Bayes Assumption

Published 13 Feb 2013 in cs.AI | (1302.3594v1)

Abstract: A naive (or Idiot) Bayes network is a network with a single hypothesis node and several observations that are conditionally independent given the hypothesis. We recently surveyed a number of members of the UAI community and discovered a general lack of understanding of the implications of the Naive Bayes assumption on the kinds of problems that can be solved by these networks. It has long been recognized [Minsky 61] that if observations are binary, the decision surfaces in these networks are hyperplanes. We extend this result (hyperplane separability) to Naive Bayes networks with m-ary observations. In addition, we illustrate the effect of observation-observation dependencies on decision surfaces. Finally, we discuss the implications of these results on knowledge acquisition and research in learning.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.