Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Sample Complexity of Learning Bayesian Networks (1302.3579v1)

Published 13 Feb 2013 in cs.LG and stat.ML

Abstract: In recent years there has been an increasing interest in learning Bayesian networks from data. One of the most effective methods for learning such networks is based on the minimum description length (MDL) principle. Previous work has shown that this learning procedure is asymptotically successful: with probability one, it will converge to the target distribution, given a sufficient number of samples. However, the rate of this convergence has been hitherto unknown. In this work we examine the sample complexity of MDL based learning procedures for Bayesian networks. We show that the number of samples needed to learn an epsilon-close approximation (in terms of entropy distance) with confidence delta is O((1/epsilon)4/3log(1/epsilon)log(1/delta)loglog (1/delta)). This means that the sample complexity is a low-order polynomial in the error threshold and sub-linear in the confidence bound. We also discuss how the constants in this term depend on the complexity of the target distribution. Finally, we address questions of asymptotic minimality and propose a method for using the sample complexity results to speed up the learning process.

Citations (150)

Summary

We haven't generated a summary for this paper yet.