Papers
Topics
Authors
Recent
2000 character limit reached

Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations

Published 8 Feb 2013 in math.NA | (1302.2136v2)

Abstract: Discontinuous Galerkin methods are developed for solving the Vlasov-Maxwell system, methods that are designed to be systematically as accurate as one wants with provable conservation of mass and possibly total energy. Such properties in general are hard to achieve within other numerical method frameworks for simulating the Vlasov-Maxwell system. The proposed scheme employs discontinuous Galerkin discretizations for both the Vlasov and the Maxwell equations, resulting in a consistent description of the distribution function and electromagnetic fields. It is proven, up to some boundary effects, that charge is conserved and the total energy can be preserved with suitable choices of the numerical flux for the Maxwell equations and the underlying approximation spaces. Error estimates are established for several flux choices. The scheme is tested on the streaming Weibel instability: the order of accuracy and conservation properties of the proposed method are verified.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.