New Concept of Solvability in Quantum Mechanics
Abstract: In a pre-selected Hilbert space of quantum states the unitarity of the evolution is usually guaranteed via a pre-selection of the generator (i.e., of the Hamiltonian operator) in self-adjoint form. In fact, the simultaneous use of both of these pre-selections is overrestrictive. One should be allowed to make a given Hamiltonian self-adjoint only after an {\em ad hoc} generalization of Hermitian conjugation. We argue that in the generalized, hidden-Hermiticity scenario with nontrivial metric, the current concept of solvability (meaning, most often, the feasibility of a non-numerical diagonalization of Hamiltonian) requires a generalization allowing for a non-numerical form of metric. A few illustrative solvable quantum models of this type are presented.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.