Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hopf Algebras, Distributive (Laplace) Pairings and Hash Products: A unified approach to tensor product decompositions of group characters (1302.1689v1)

Published 7 Feb 2013 in math.RT

Abstract: We show for bicommutative graded connected Hopf algebras that a certain distributive (Laplace) subgroup of the convolution monoid of 2-cochains parameterizes certain well behaved Hopf algebra deformations. Using the Laplace group, or its Frobenius subgroup, we define higher derived hash products, and develop a general theory to study their main properties. Applying our results to the (universal) bicommutative graded connected Hopf algebra of symmetric functions, we show that classical tensor product and character decompositions, such as those for the general linear group, mixed co- and contravariant or rational characters, orthogonal and symplectic group characters, Thibon and reduced symmetric group characters, are special cases of higher derived hash products. In the Appendix we discuss a relation to formal group laws.

Summary

We haven't generated a summary for this paper yet.