Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fiedler Vectors and Elongation of Graphs: A Threshold Phenomenon on a Particular Class of Trees (1302.1266v1)

Published 6 Feb 2013 in cs.DM and math.CO

Abstract: Let $G$ be a graph. Its laplacian matrix $L(G)$ is positive and we consider eigenvectors of its first non-null eigenvalue that are called Fiedler vector. They have been intensively used in spectral partitioning problems due to their good empirical properties. More recently Fiedler vectors have been also popularized in the computer graphics community to describe elongation of shapes. In more technical terms, authors have conjectured that extrema of Fiedler vectors can yield the diameter of a graph. In this work we present (FED) property for a graph $G$, i.e. the fact that diameter of a graph can be obtain by Fiedler vectors. We study in detail a parametric family of trees that gives indeed a counter example for the previous conjecture but reveals a threshold phenomenon for (FED) property. We end by an exhaustive enumeration of trees with at most 20 vertices for which (FED) is true and some perspectives.

Citations (7)

Summary

We haven't generated a summary for this paper yet.