Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Excess-Risk of Distributed Stochastic Learners (1302.1157v3)

Published 5 Feb 2013 in math.OC, cs.DC, cs.MA, and cs.SI

Abstract: This work studies the learning ability of consensus and diffusion distributed learners from continuous streams of data arising from different but related statistical distributions. Four distinctive features for diffusion learners are revealed in relation to other decentralized schemes even under left-stochastic combination policies. First, closed-form expressions for the evolution of their excess-risk are derived for strongly-convex risk functions under a diminishing step-size rule. Second, using these results, it is shown that the diffusion strategy improves the asymptotic convergence rate of the excess-risk relative to non-cooperative schemes. Third, it is shown that when the in-network cooperation rules are designed optimally, the performance of the diffusion implementation can outperform that of naive centralized processing. Finally, the arguments further show that diffusion outperforms consensus strategies asymptotically, and that the asymptotic excess-risk expression is invariant to the particular network topology. The framework adopted in this work studies convergence in the stronger mean-square-error sense, rather than in distribution, and develops tools that enable a close examination of the differences between distributed strategies in terms of asymptotic behavior, as well as in terms of convergence rates.

Citations (26)

Summary

We haven't generated a summary for this paper yet.