Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizing determinization from automata to coalgebras (1302.1046v2)

Published 5 Feb 2013 in cs.LO

Abstract: The powerset construction is a standard method for converting a nondeterministic automaton into a deterministic one recognizing the same language. In this paper, we lift the powerset construction from automata to the more general framework of coalgebras with structured state spaces. Coalgebra is an abstract framework for the uniform study of different kinds of dynamical systems. An endofunctor F determines both the type of systems (F-coalgebras) and a notion of behavioural equivalence (~_F) amongst them. Many types of transition systems and their equivalences can be captured by a functor F. For example, for deterministic automata the derived equivalence is language equivalence, while for non-deterministic automata it is ordinary bisimilarity. We give several examples of applications of our generalized determinization construction, including partial Mealy machines, (structured) Moore automata, Rabin probabilistic automata, and, somewhat surprisingly, even pushdown automata. To further witness the generality of the approach we show how to characterize coalgebraically several equivalences which have been object of interest in the concurrency community, such as failure or ready semantics.

Citations (134)

Summary

We haven't generated a summary for this paper yet.