Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ergodic Actions and Spectral Triples (1302.0426v1)

Published 2 Feb 2013 in math.OA and math.FA

Abstract: In this article, we give a general construction of spectral triples from certain Lie group actions on unital C*-algebras. If the group G is compact and the action is ergodic, we actually obtain a real and finitely summable spectral triple which satisfies the first order condition of Connes' axioms. This provides a link between the "algebraic" existence of ergodic action and the "analytic" finite summability property of the unbounded selfadjoint operator. More generally, for compact G we carefully establish that our (symmetric) unbounded operator is essentially selfadjoint. Our results are illustrated by a host of examples - including noncommutative tori and quantum Heisenberg manifolds.

Summary

We haven't generated a summary for this paper yet.