Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite choice, convex choice and finding roots (1302.0380v3)

Published 2 Feb 2013 in math.LO and cs.CG

Abstract: We investigate choice principles in the Weihrauch lattice for finite sets on the one hand, and convex sets on the other hand. Increasing cardinality and increasing dimension both correspond to increasing Weihrauch degrees. Moreover, we demonstrate that the dimension of convex sets can be characterized by the cardinality of finite sets encodable into them. Precisely, choice from an n+1 point set is reducible to choice from a convex set of dimension n, but not reducible to choice from a convex set of dimension n-1. Furthermore we consider searching for zeros of continuous functions. We provide an algorithm producing 3n real numbers containing all zeros of a continuous function with up to n local minima. This demonstrates that having finitely many zeros is a strictly weaker condition than having finitely many local extrema. We can prove 3n to be optimal.

Citations (26)

Summary

We haven't generated a summary for this paper yet.