Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms (1302.0261v2)

Published 1 Feb 2013 in math.ST, stat.CO, and stat.TH

Abstract: We introduce and study the Group Square-Root Lasso (GSRL) method for estimation in high dimensional sparse regression models with group structure. The new estimator minimizes the square root of the residual sum of squares plus a penalty term proportional to the sum of the Euclidean norms of groups of the regression parameter vector. The net advantage of the method over the existing Group Lasso (GL)-type procedures consists in the form of the proportionality factor used in the penalty term, which for GSRL is independent of the variance of the error terms. This is of crucial importance in models with more parameters than the sample size, when estimating the variance of the noise becomes as difficult as the original problem. We show that the GSRL estimator adapts to the unknown sparsity of the regression vector, and has the same optimal estimation and prediction accuracy as the GL estimators, under the same minimal conditions on the model. This extends the results recently established for the Square-Root Lasso, for sparse regression without group structure. Moreover, as a new type of result for Square-Root Lasso methods, with or without groups, we study correct pattern recovery, and show that it can be achieved under conditions similar to those needed by the Lasso or Group-Lasso-type methods, but with a simplified tuning strategy. We implement our method via a new algorithm, with proved convergence properties, which, unlike existing methods, scales well with the dimension of the problem. Our simulation studies support strongly our theoretical findings.

Summary

We haven't generated a summary for this paper yet.