Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter estimation and model testing for Markov processes via conditional characteristic functions (1302.0122v1)

Published 1 Feb 2013 in math.ST and stat.TH

Abstract: Markov processes are used in a wide range of disciplines, including finance. The transition densities of these processes are often unknown. However, the conditional characteristic functions are more likely to be available, especially for L\'{e}vy-driven processes. We propose an empirical likelihood approach, for both parameter estimation and model specification testing, based on the conditional characteristic function for processes with either continuous or discontinuous sample paths. Theoretical properties of the empirical likelihood estimator for parameters and a smoothed empirical likelihood ratio test for a parametric specification of the process are provided. Simulations and empirical case studies are carried out to confirm the effectiveness of the proposed estimator and test.

Summary

We haven't generated a summary for this paper yet.