Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference for modulated stationary processes (1302.0114v1)

Published 1 Feb 2013 in math.ST and stat.TH

Abstract: We study statistical inferences for a class of modulated stationary processes with time-dependent variances. Due to non-stationarity and the large number of unknown parameters, existing methods for stationary, or locally stationary, time series are not applicable. Based on a self-normalization technique, we address several inference problems, including a self-normalized central limit theorem, a self-normalized cumulative sum test for the change-point problem, a long-run variance estimation through blockwise self-normalization, and a self-normalization-based wild bootstrap. Monte Carlo simulation studies show that the proposed self-normalization-based methods outperform stationarity-based alternatives. We demonstrate the proposed methodology using two real data sets: annual mean precipitation rates in Seoul from 1771-2000, and quarterly U.S. Gross National Product growth rates from 1947-2002.

Summary

We haven't generated a summary for this paper yet.