Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast non parametric entropy estimation for spatial-temporal saliency method (1301.7661v1)

Published 31 Jan 2013 in cs.CV

Abstract: This paper formulates bottom-up visual saliency as center surround conditional entropy and presents a fast and efficient technique for the computation of such a saliency map. It is shown that the new saliency formulation is consistent with self-information based saliency, decision-theoretic saliency and Bayesian definition of surprises but also faces the same significant computational challenge of estimating probability density in very high dimensional spaces with limited samples. We have developed a fast and efficient nonparametric method to make the practical implementation of these types of saliency maps possible. By aligning pixels from the center and surround regions and treating their location coordinates as random variables, we use a k-d partitioning method to efficiently estimating the center surround conditional entropy. We present experimental results on two publicly available eye tracking still image databases and show that the new technique is competitive with state of the art bottom-up saliency computational methods. We have also extended the technique to compute spatiotemporal visual saliency of video and evaluate the bottom-up spatiotemporal saliency against eye tracking data on a video taken onboard a moving vehicle with the driver's eye being tracked by a head mounted eye-tracker.

Citations (1)

Summary

We haven't generated a summary for this paper yet.