Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Analysis on Minimum s-t Cut Capacity of Random Graphs with Specified Degree Distribution (1301.7542v1)

Published 31 Jan 2013 in cs.IT and math.IT

Abstract: The capacity (or maximum flow) of an unicast network is known to be equal to the minimum s-t cut capacity due to the max-flow min-cut theorem. If the topology of a network (or link capacities) is dynamically changing or unknown, it is not so trivial to predict statistical properties on the maximum flow of the network. In this paper, we present a probabilistic analysis for evaluating the accumulate distribution of the minimum s-t cut capacity on random graphs. The graph ensemble treated in this paper consists of weighted graphs with arbitrary specified degree distribution. The main contribution of our work is a lower bound for the accumulate distribution of the minimum s-t cut capacity. From some computer experiments, it is observed that the lower bound derived here reflects the actual statistical behavior of the minimum s-t cut capacity of random graphs with specified degrees.

Citations (1)

Summary

We haven't generated a summary for this paper yet.