The phase transition in inhomogeneous random intersection graphs
Abstract: We analyze the component evolution in inhomogeneous random intersection graphs when the average degree is close to 1. As the average degree increases, the size of the largest component in the random intersection graph goes through a phase transition. We give bounds on the size of the largest components before and after this transition. We also prove that the largest component after the transition is unique. These results are similar to the phase transition in Erd\H{o}s-R\'enyi random graphs; one notable difference is that the jump in the size of the largest component varies in size depending on the parameters of the random intersection graph.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.