Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Step Regression Learning for Compositional Distributional Semantics (1301.6939v2)

Published 29 Jan 2013 in cs.CL and cs.LG

Abstract: We present a model for compositional distributional semantics related to the framework of Coecke et al. (2010), and emulating formal semantics by representing functions as tensors and arguments as vectors. We introduce a new learning method for tensors, generalising the approach of Baroni and Zamparelli (2010). We evaluate it on two benchmark data sets, and find it to outperform existing leading methods. We argue in our analysis that the nature of this learning method also renders it suitable for solving more subtle problems compositional distributional models might face.

Citations (145)

Summary

We haven't generated a summary for this paper yet.