Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Face Recognition via Block Sparse Bayesian Learning (1301.6847v2)

Published 29 Jan 2013 in cs.CV

Abstract: Face recognition (FR) is an important task in pattern recognition and computer vision. Sparse representation (SR) has been demonstrated to be a powerful framework for FR. In general, an SR algorithm treats each face in a training dataset as a basis function, and tries to find a sparse representation of a test face under these basis functions. The sparse representation coefficients then provide a recognition hint. Early SR algorithms are based on a basic sparse model. Recently, it has been found that algorithms based on a block sparse model can achieve better recognition rates. Based on this model, in this study we use block sparse Bayesian learning (BSBL) to find a sparse representation of a test face for recognition. BSBL is a recently proposed framework, which has many advantages over existing block-sparse-model based algorithms. Experimental results on the Extended Yale B, the AR and the CMU PIE face databases show that using BSBL can achieve better recognition rates and higher robustness than state-of-the-art algorithms in most cases.

Citations (14)

Summary

We haven't generated a summary for this paper yet.