Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Variational Approximation for Bayesian Networks with Discrete and Continuous Latent Variables (1301.6724v1)

Published 23 Jan 2013 in cs.AI, cs.LG, and stat.ML

Abstract: We show how to use a variational approximation to the logistic function to perform approximate inference in Bayesian networks containing discrete nodes with continuous parents. Essentially, we convert the logistic function to a Gaussian, which facilitates exact inference, and then iteratively adjust the variational parameters to improve the quality of the approximation. We demonstrate experimentally that this approximation is faster and potentially more accurate than sampling. We also introduce a simple new technique for handling evidence, which allows us to handle arbitrary distributions on observed nodes, as well as achieving a significant speedup in networks with discrete variables of large cardinality.

Citations (117)

Summary

We haven't generated a summary for this paper yet.