Tradeoffs for reliable quantum information storage in surface codes and color codes (1301.6588v1)
Abstract: The family of hyperbolic surface codes is one of the rare families of quantum LDPC codes with non-zero rate and unbounded minimum distance. First, we introduce a family of hyperbolic color codes. This produces a new family of quantum LDPC codes with non-zero rate and with minimum distance logarithmic in the blocklength. Second, we study the tradeoff between the length n, the number of encoded qubits k and the distance d of surface codes and color codes. We prove that kd2 is upper bounded by C(log k)2n, where C is a constant that depends only on the row weight of the parity-check matrix. Our results prove that the best asymptotic minimum distance of LDPC surface codes and color codes with non-zero rate is logarithmic in the length.