2000 character limit reached
2-Dimensional Combinatorial Calabi Flow in Hyperbolic Background Geometry (1301.6505v1)
Published 28 Jan 2013 in math.DG and math.GT
Abstract: For triangulated surfaces locally embedded in the standard hyperbolic space, we introduce combinatorial Calabi flow as the negative gradient flow of combinatorial Calabi energy. We prove that the flow produces solutions which converge to ZCCP-metric (zero curvature circle packing metric) if the initial energy is small enough. Assuming the curvature has a uniform upper bound less than $2\pi$, we prove that combinatorial Calabi flow exists for all time. Moreover, it converges to ZCCP-metric if and only if ZCCP-metric exists.