Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards a faster symbolic aggregate approximation method (1301.5871v1)

Published 24 Jan 2013 in cs.DB and cs.IR

Abstract: The similarity search problem is one of the main problems in time series data mining. Traditionally, this problem was tackled by sequentially comparing the given query against all the time series in the database, and returning all the time series that are within a predetermined threshold of that query. But the large size and the high dimensionality of time series databases that are in use nowadays make that scenario inefficient. There are many representation techniques that aim at reducing the dimensionality of time series so that the search can be handled faster at a lower-dimensional space level. The symbolic aggregate approximation (SAX) is one of the most competitive methods in the literature. In this paper we present a new method that improves the performance of SAX by adding to it another exclusion condition that increases the exclusion power. This method is based on using two representations of the time series: one of SAX and the other is based on an optimal approximation of the time series. Pre-computed distances are calculated and stored offline to be used online to exclude a wide range of the search space using two exclusion conditions. We conduct experiments which show that the new method is faster than SAX.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (10)

Summary

We haven't generated a summary for this paper yet.