Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-lying zeroes of Maass form $L$-functions (1301.5702v2)

Published 24 Jan 2013 in math.NT

Abstract: The Katz-Sarnak density conjecture states that the scaling limits of the distributions of zeros of families of automorphic $L$-functions agree with the scaling limits of eigenvalue distributions of classical subgroups of the unitary groups $U(N)$. This conjecture is often tested by way of computing particular statistics, such as the one-level density, which evaluates a test function with compactly supported Fourier transform at normalized zeros near the central point. Iwaniec, Luo, and Sarnak studied the one-level densities of cuspidal newforms of weight $k$ and level $N$. They showed in the limit as $kN \to\infty$ that these families have one-level densities agreeing with orthogonal type for test functions with Fourier transform supported in $(-2,2)$. Exceeding $(-1,1)$ is important as the three orthogonal groups are indistinguishable for support up to $(-1,1)$ but are distinguishable for any larger support. We study the other family of ${\rm GL}_2$ automorphic forms over $\mathbb{Q}$: Maass forms. To facilitate the analysis, we use smooth weight functions in the Kuznetsov formula which, among other restrictions, vanish to order $M$ at the origin. For test functions with Fourier transform supported inside $\left(-2 + \frac{2}{2M+1}, 2 - \frac{2}{2M+1}\right)$, we unconditionally prove the one-level density of the low-lying zeros of level 1 Maass forms, as the eigenvalues tend to infinity, agrees only with that of the scaling limit of orthogonal matrices.

Summary

We haven't generated a summary for this paper yet.