Papers
Topics
Authors
Recent
Search
2000 character limit reached

Transfer Topic Modeling with Ease and Scalability

Published 24 Jan 2013 in cs.CL, cs.LG, and stat.ML | (1301.5686v2)

Abstract: The increasing volume of short texts generated on social media sites, such as Twitter or Facebook, creates a great demand for effective and efficient topic modeling approaches. While latent Dirichlet allocation (LDA) can be applied, it is not optimal due to its weakness in handling short texts with fast-changing topics and scalability concerns. In this paper, we propose a transfer learning approach that utilizes abundant labeled documents from other domains (such as Yahoo! News or Wikipedia) to improve topic modeling, with better model fitting and result interpretation. Specifically, we develop Transfer Hierarchical LDA (thLDA) model, which incorporates the label information from other domains via informative priors. In addition, we develop a parallel implementation of our model for large-scale applications. We demonstrate the effectiveness of our thLDA model on both a microblogging dataset and standard text collections including AP and RCV1 datasets.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.